题目内容
16.分析 根据“爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°”可以求出AD的长,然后根据“在一楼房的底端A点处观测观光塔顶端C处的仰角是60°”可以求出CD的长.
解答 解:∵爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,
∴∠ADB=30°,
在Rt△ABD中,
tan30°=$\frac{AB}{AD}$,
解得,$\frac{45}{AD}$=$\frac{\sqrt{3}}{3}$,
∴AD=45$\sqrt{3}$,
∵在一楼房的底端A点处观测观光塔顶端C处的仰角是60°,
∴在Rt△ACD中,
CD=AD•tan60°=45$\sqrt{3}$×$\sqrt{3}$=135米.
故答案为135米.
点评 本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角、俯角构造直角三角形并解直角三角形.
练习册系列答案
相关题目
7.
如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( )
| A. | 2海里 | B. | 2sin55°海里 | C. | 2cos55°海里 | D. | 2tan55°海里 |
11.
如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=$\frac{k}{x}$与正方形ABCD有公共点,则k的取值范围为( )
| A. | 1<k<9 | B. | 2≤k≤34 | C. | 1≤k≤16 | D. | 4≤k<16 |