题目内容
先化简,再求值: ,其中
已知二次函数y=ax2-bx+c的图象经过点(-1,0),且a,b,c均为非零实数,则的值是_____.
如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.
今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化的建设的投入,计划从今年起三年共投入1440万元,已知2015年投入1000万元.设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )
A. 1000(1+x)2=1440
B. 1000(x2+1)=1440
C. 1000+1000x+1000x2=1440
D. 1000+1000(1+x)+1000(1+x)2=1440
某学校校长寒假将带领该校市级三好学生去旅游。甲旅行社说:“若校长买全票一张,则其学生可享受半价优惠。”乙旅行社说:“包括校长在内全部按全票的6折优惠”。若全票价为240元,则:
(1)设学生数为,分别计算两家旅行社的收费(用含的式子表示);
(2)如何选择两家旅行社,可使学校更划算。
一艘轮船在A、B两地之间航行,顺水航行需要3小时,逆水航行需要5小时。已知该轮船在静水中的速度是12千米每小时,求A、B两地之间的距离。【解析】设水流速度为千米每小时,可列方程为: 。
如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为( )
A. 84cm2 B. 90cm2 C. 126cm2 D. 168cm2
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
把函数y=﹣2x2的图象向左平移1个单位,再向上平移6个单位,所得的抛物线的函数关系式是( )
A. y=﹣2(x﹣1)2+6 B. y=﹣2(x﹣1)2﹣6 C. y=﹣2(x+1)2+6 D. y=﹣2(x+1)2﹣6