题目内容

11.如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
(1)请你写出图中所有等腰三角形;
(2)判断EF、BE、FC之间的关系,并证明你的结论.

分析 (1)由等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质得到∠AEF=∠ABC,∠AFE=∠ACB,等量代换得到∠AEF=∠AFE,根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的定义得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EBD=∠EDB,∠FDC=∠FCD,得到∠DBC=∠DCB,即可得到结论;
(2)由(1)证得DE=BE,DF=CF,等量代换即可得到结论.

解答 解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE,
∵EF∥BC,
∴∠EDB=∠DBC,∠FDC=∠DCB,
∵∠ABC和∠ACB的平分线交于点D,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∴∠EBD=∠EDB,∠FDC=∠FCD,
∵∠ABC=∠ACB,
∴∠DBC=∠DCB,
∴BE=DE,DF=CF,
∴△ABC,△AEF,△BOC,△BEO,△CFO是等腰三角形;

(2)EF=BE+CF,
理由:由(1)证得:DE=BE,DF=CF,
∴EF=DE+DF=BE+CF.

点评 此题考查了等腰三角形的判定,平行线的性质,利用了等量代换的思想,熟练掌握性质与判定是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网