题目内容

16.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为125°或15°.

分析 由直角三角形的性质求出∠BDA的度数,由等腰三角形的性质和三角形内角和定理求出∠A=∠ABD=55°,由全等三角形的性质得出∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况,即可得出结果.

解答 解:∵BE⊥AD于E,∠EBD=20°,
∴∠BDA=90°-20°=70°,
∵AD=BD,∴∠A=∠ABD=55°,
∵△ABD≌△CDB,
∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,
分两种情况:
①如图1所示:∠CDE=70°+55°=125°;
②如图2所示:∠CDE=70°-55°=15°;
综上所述:∠CDE的度数为125°或15°;
故答案为:125°或15°.

点评 本题考查了全等三角形的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理;根据题意画出图形,分两种情况讨论是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网