题目内容

15.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是(  )
A.$\frac{BD}{DE}$=$\frac{\sqrt{5}-1}{2}$B.点D是线段BC的黄金分割点
C.点E是线段BC的黄金分割点D.点E是线段CD的黄金分割点

分析 根据等腰三角形的性质、相似三角形的判定定理及性质定理解答即可.

解答 解:∵AB=AC,∠BAC=108°,
∴∠B=∠C=36°,
∵∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,
∴∠BAD=∠DAE=∠EAC=36°,
∴△BDA∽△BAC,
∴$\frac{BD}{BA}$=$\frac{BA}{BC}$,
又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC-∠BAD=72°,
∴∠ADC=∠DAC,
∴CD=CA=BA,
∴BD=BC-CD=BC-AB,
则$\frac{BC-BA}{BA}$=$\frac{\sqrt{5}-1}{2}$,即$\frac{BD}{BA}$=$\frac{BA}{BC}$=$\frac{\sqrt{5}-1}{2}$,故A错误;
故选:A.

点评 本题考查的是黄金分割的概念,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网