题目内容
10.分析 根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积64,由此即可解决问题.
解答
解:如图记图中三个正方形分别为P、Q、M.
根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.
即A、B、C、D的面积之和为M的面积.
∵M的面积是82=64,
∴A、B、C、D的面积之和为64,设正方形D的面积为x,
∴11+10+13+x=64,
∴x=30.
故答案为:30.
点评 此题考查了勾股定理,正方形的面积,得出正方形A,B,C,D的面积和即是最大正方形M的面积是解题的关键.
练习册系列答案
相关题目
19.下列说法正确的是( )
| A. | -a一定是负数 | B. | a的绝对值等于a | C. | -b是b的相反数 | D. | 0的倒数为0 |