题目内容
16.抛物线y=-x2+3x+12经过点(-2,2).分析 求出x=-2时的函数值即可解决问题.
解答 解:当x=-2时,y=-4-6+12=2,
所以抛物线经过(-2,2),
故答案为2.
点评 本题考查二次函数图象上的点的坐标特征,熟练掌握函数值的求法是解题的关键,属于基础题.
练习册系列答案
相关题目
8.以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(米)与飞行时间t(秒)的关系如下表,且h与t的函数关系是我们学过的一次函数、二次函数、反比例函数中的一种
(1)请你从上述函数中选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由
(2)什么时候小球最高?最大高度是多少?
(3)小球运动的时间t在什么范围内,小球在运动过程中的高度不低于18.75米.
| 时间t(秒) | 0 | 1 | 3 | 4 |
| 高度h(米) | 0 | 15 | 15 | 0 |
(2)什么时候小球最高?最大高度是多少?
(3)小球运动的时间t在什么范围内,小球在运动过程中的高度不低于18.75米.