题目内容


.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.

(1)证明:四边形ADCE为菱形;

(2)证明:DE=BC.

 

 


【考点】菱形的判定与性质.

【专题】证明题.

【分析】(1)先证明四边形ADCE是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=AD,即可得出四边形ADCE为菱形;

(2)由菱形的性质得出AC⊥DE,证出DE∥BC,再由CE∥AB,证出四边形BCED是平行四边形,即可得出结论.

【解答】(1)证明:∵AE∥CD,CE∥AB,

∴四边形ADCE是平行四边形,

∵∠ACB=90°,D为AB的中点,

∴CD=AB=AD,

∴四边形ADCE为菱形;

(2)证明:∵四边形ADCE为菱形,

∴AC⊥DE,

∵∠ACB=90°,

∴AC⊥BC,

∴DE∥BC,

又∵CE∥AB,

∴四边形BCED是平行四边形,

∴DE=BC.

【点评】本题考查了菱形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形BCED是平行四边形是解决问题(2)的关键.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网