题目内容
某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:
.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73.)
![]()
【答案】33.3.
【解析】
试题分析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.
试题解析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.
∵在Rt△BCF中,
=i=1:
,∴设BF=k,则CF=
k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=
.∵DF=DC+CF,∴DF=40+
.∵在Rt△AEH中,tan∠AEH=
,∴AH=tan37°×(40+
)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大楼AB的高度约为33.3米.
![]()
考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.
【题型】解答题
【结束】
24
为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年一班共有多少人;
![]()
(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________;
(4)若等级A为优秀,求该班的优秀率.