题目内容
在中,,则下列说法错误的是( ).
A. B. C. D.
立方根等于3的数是( )
A. 9 B. ±9 C. 27 D. ±27
如图,从高8米的电杆AC的顶部A处,向地面的固定点B处拉一根铁丝,若B点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?请你说明理由.
利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,,则斜边OF的长即为.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:_______________________________________________________________.
已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为 cm.
某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
试题分析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.
试题解析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.
∵在Rt△BCF中, =i=1:,∴设BF=k,则CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大楼AB的高度约为33.3米.
考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.
【题型】解答题【结束】24
为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年一班共有多少人;
(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________;
(4)若等级A为优秀,求该班的优秀率.
如图所示,在平面直角坐标系中,矩形ABCD的BC边落在y轴上,其它部分均在第一象限,双曲线y=过点A,延长对角线CA交x轴于点E,以AD、AE为边作平行四边形AEFD,若平行四边形AEFD的面积为4,则k值为( )
A. 2 B. 4 C. 8 D. 12
某中学杨老师为学校购买运动会的奖品后,回学校向总务处童老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1200元,现在找还余下的118元.” 童老师算了一下,说:“你肯定搞错了.”
(1)童老师为什么说他搞错了?请你用已学过方程的知识帮童老师向杨老师解释清楚;
(2)杨老师连忙清点购买的物品,发现在另外商场还买了一个笔记本,但笔记本的单价在小票上已经模糊不清,只能辨认出应为小于10元的整数,请问:笔记本的单价可能为多少元?
某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?