题目内容
如果一梯子底端离建筑物9 m远,那么15 m长的梯子可达到建筑物的高度是_______m.
估计的值在( )
A. 4和5之间 B. 5和6之间 C. 6和7之间 D. 7和8之间
如图,下列推理错误的是 ( )
A. 因为∥,所以∠1=∠3
B. 因为∠2=∠4,所以∥
C. 因为∥,所以∠2=∠4
D. 因为∠1=∠3,∠2=∠4,所以∥
如图,若∠1=∠2,则互相平行的线段是________ .
如图,从高8米的电杆AC的顶部A处,向地面的固定点B处拉一根铁丝,若B点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?请你说明理由.
如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为( )
A. B. C. D.
利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,,则斜边OF的长即为.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:_______________________________________________________________.
某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
试题分析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.
试题解析:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.
∵在Rt△BCF中, =i=1:,∴设BF=k,则CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大楼AB的高度约为33.3米.
考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.
【题型】解答题【结束】24
为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年一班共有多少人;
(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________;
(4)若等级A为优秀,求该班的优秀率.
如图,直线AC∥BD,AB平分∠CAD,∠1=62°,则∠2的度数是( )
A. 50° B. 59° C. 60° D. 62°