题目内容

3.如图所示,已知CD∥AB,OE平分∠DOB,OE⊥OF,∠CDO=60°,求∠DOF的度数.

分析 根据两直线平行内错角相等,得到∠D=∠AOD=60°,只要证明OF是∠AOD的角平分线即可.

解答 解:∵CD∥AB,
∴∠D=∠DOA=60°,
∵OE⊥OF,
∴∠EOF=90°,∠AOF+∠EOB=90°,
∵OE平分∠DOB,
∴∠DOE=∠EOB,
∵∠DOF+∠DOE=90°,∠AOF+∠EOB=90°,
∴∠DOF=∠AOF,
∴∠DOF=$\frac{1}{2}$∠DOA=$\frac{1}{2}$×60°=30°.

点评 本题考查平行线的性质、垂直的定义、等角的余角相等等知识,灵活运用这些知识是解题的关键,学会证明角相等的方法,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网