在不等式的变形过程中:①去分母,得5(2+x)>3(2x-1);②去括号,得10+5x>6x-3;③移项得5x-6x>-3-10;④系数化为1,得x>13.其中错误的步骤是( )

A. ① B. ②

C. ③ D. ④

D 【解析】>的变形过程中:①去分母,得5(2+x)>3(2x-1);②去括号,得10+5x>6x-3;③移项得5x-6x>-3-10;④系数化为1,得x<13.故错误的步骤是④.故选D.

小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有_________个.

5 【解析】设十位数字为x,则个位数字为x+4 依题意得10x+x+4<88 得x< 又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9 ∴1≤x≤5,故这样的两位数有5个. 故答案:5.

如图,在?ABCD中,点E,F在对角线AC上,且AE=CF.求证:

(1)DE=BF;

(2)四边形DEBF是平行四边形.

详见解析. 【解析】 试题分析:(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AD∥CB,AD=CB, ∴∠DAE=∠BCF, 在△ADE和△CBF中, ∴△AD...

如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.

14. 【解析】 试题分析:∵D、E分别AB、BC的中点,∴AD=AB,DE=AC.同理AF=AC,EF=AB.∴l四边形ADEF=AD+DE+EF+AF=(AB+AC+AB+AC)=AB+AC=14cm.

如图,?ABCD的对角线AC,BD相交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为(   )

A. 13 B. 17 C. 20 D. 26

B 【解析】试题分析:由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长. 【解析】 ∵四边形ABCD是平行四边形, ∴OA=OC=3,OB=OD=6,BC=AD=8, ∴△OBC的周长=OB+OC+AD=3+6+8=17. 故选:B.

在下列条件中,能够判定一个四边形是平行四边形的是(  )

A. 一组对边平行,另一组对边相等

B. 一组对边相等,一组对角相等

C. 一组对边平行,一条对角线平分另一条对角线

D. 一组对边相等,一条对角线平分另一条对角线

C 【解析】A、错误.这个四边形有可能是等腰梯形. B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形. D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C.

如图,?ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是(  )

A. 10 B. 14 C. 20 D. 22

B 【解析】试题分析:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选B.

平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);

(1)求抛物线的表达式;

(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.

(1)y=2x2﹣8x+6;(2)向下平移6个单位. 【解析】试题分析:(1)利用待定系数法直接求出抛物线的解析式; (2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k. 试题解析:【解析】 (1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网