题目内容
【题目】如图1,将任意一个等腰直角三角板△ABC放至平面直角坐标系xOy中,直角顶点A(a,0)在x轴的负半轴,点B(0,b)在y轴的正半轴,点C落在第二象限,
(1)若
=﹣b2+4b﹣4,求C点坐标;
(2)如图2,再将任意的一个等腰直角三角板△DEF放至平面直角坐标系xOy中,点E在x轴的正半轴上,F在y轴的负半轴上,直角顶点D落在第四象限,设点G为BC的中点,证明:点D,O,G三点刚好在同一条直线上;
(3)已知a=﹣4,b<4.如图3,点O关于直线AB的对称点为点H,AH交线段BC于点P,PR⊥x轴于点R,求△APR的周长.
![]()
【答案】(1)C(﹣6,4);(2)证明见解析;(3)△APR的周长=8.
【解析】
(1)如图1中,作CH⊥OA于H.利用非负数的性质求出a,b,再利用全等三角形的性质解决问题即可.
(2)利用四点共圆证明∠AOG=45°,∠DOE=45°,推出∠AOG=∠DOE即可.
(3)如图3中,连接BH,作BK⊥PR于K,在AO上截取AM,使得AM=AP.利用全等三角形的性质证明PK=PH,RK=RO,可以推出△APR的周长=AH+AO=8.
解:(1)如图1中,作CH⊥OA于H.
![]()
∵
=﹣b2+4b﹣4,
∴
+(b﹣2)2=0,
∵
≥0,(b﹣2)2≥0,
∴2b+a=0,b=2,
∴a=﹣4,
∴A(﹣4,0),B(0,2),
∴OA=4,OB=2,
∵∠CHA=∠AOB=∠CAB=90°,
∴∠CAH+∠BAO=90°,∠BAO+∠ABO=90°,
∴∠CAH=∠ABO,
∵AC=AB,
∴△CHA≌△AOB(AAS),
∴CH=OA=4,AH=OB=2,
∴OH=6,
∴C(﹣6,4).
(2)如图2中,连接AG.
![]()
∵AC=AB,CG=GB,
∴AG⊥BC,∠ABC=45°,
∴∠AGB=∠AOB=90°,
∴A,G,B,O四点共圆,
∴∠AOG=∠ABC=45°,
∵∠EOF=∠EDF=90°,
∴O,E,D,F四点共圆,
∴∠DOE=∠DFE,
∵DE=DF,∠EDF=90°,
∴∠DFE=45°,
∠DOF=45°=∠AOG,
∴D,O,G共线.
(3)如图3中,连接BH,作BK⊥PR于K,在AO上截取AM,使得AM=AP.
![]()
∵AB=AB,∠BAP=∠BAM,AP=AM,
∴△BAP≌△BAM(SAS),
∴BP=BM,∠ABP=∠ABM=45°,
∴∠PBM=90°,
∵∠H=∠BOM=90°,BP=BM,BH=BO,
∴Rt△BHP≌△BOM(HL),
∴∠BPH=∠BMO,
∵∠PBM=∠PRM=90°,
∴∠BMO+∠AMB=180°,∠AMB+∠RPB=180°,
∴∠BPR=∠BMO=∠BPH,
∵BH⊥PH,BK⊥PR,
∴BH=BK,∠H=∠BKP=90°,
∵PB=PB,
∴Rt△BPH≌Rt△BPK(HL),
∴PK=PH,
∵BO=BH,
∴BK=BO,
∵∠BKR=∠KRO=∠ROB=90°,
∴四边形OBKR是矩形,
∵BO=BK,
四边形BORK是正方形,
∴RK=OR,
∴AO=AH=4,
∴△APR的周长=AP+PK+KR+AR=AH+AO=8.