题目内容
7.解下列方程组:(1)$\left\{{\begin{array}{l}{x+5y=3}\\{y-4x=9}\end{array}}\right.$
(2)$\left\{{\begin{array}{l}{2x-3y=-11}\\{\frac{1}{2}x+3y=22}\end{array}}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x+5y=3①}\\{y-4x=9②}\end{array}\right.$,
由②得:y=4x+9③,
把③代入①得:x+20x+45=3,即21x=-42,
解得:x=-2,
把x=-2代入③得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-3y=-11①}\\{\frac{1}{2}x+3y=22②}\end{array}\right.$,
①+②得:$\frac{5}{2}$x=11,
解得:x=4.4,
把x=4.4代入①得:y=6.6,
则方程组的解为$\left\{\begin{array}{l}{x=4.4}\\{y=6.6}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目