题目内容
11.(1)线段OA1的长是5,∠AOB1的度数是135°;
(2)连接AA1,求证:四边形OAA1B1是平行四边形.
分析 (1)△OAB是等腰直角三角形,△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则△OAB≌△OA1B1,根据全等三角形的性质即可求解.
(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形.
解答 (1)解:∵△OAB≌△OA1B1,
∴OA1=OA=5;
∵△OAB是等腰直角三角形,
∴∠A1OB=45°
∴∠AOB1=∠BOB1+∠BOA=90+45=135°.
故答案为5,135°;
(2)证明:∵∠AOA1=∠OA1B1=90°,
∴OA∥A1B1,
又∵OA=AB=A1B1,
∴四边形OAA1B1是平行四边形.
点评 此题主要考查了旋转的性质和平行四边形的判定,解题的关键是得出OA∥A1B1.
练习册系列答案
相关题目
2.
已知如图,△ACD内接于⊙O,E为⊙O上一点,且ED=EC,过点C作BC∥AD交AE的延长线于点B.若cosB=$\frac{3}{5}$,BC=2BE,AE=7,则ED=$\sqrt{65}$.
6.如图,A,B,C,D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O-C-D-O路线作匀速运动,设运动时间为x(秒),∠APB的度数为y(度),右图函数图象表示y与x之间函数关系,则点M的横坐标应为( )

| A. | 2 | B. | $\frac{π}{2}$ | C. | $\frac{π}{2}$+1 | D. | $\frac{π}{2}$+3 |