题目内容
如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是__________.
如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若AE:AC=3:4,AD=9,则AB等于( )
A. 10 B. 11 C. 12 D. 16
如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F。连接AF,∠AFC的度数_______.
如图,直线AB,CD被EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE.
(1)判定EM与FN之间的位置关系,并证明你的结论;
(2)由(1)的结论我们可以得到一个命题:如果两条平行线被第三条直线所截,那么一组内错角的角平分线互相 .
(3)由此可以探究并得到:如果两条平行线被第三条直线所截,那么一组同旁内角的角平分线互相 .
如图,在长为10m,宽为8m的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).则其中一个小长方形的面积为____m2.
如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于( )
A. 70° B. 65° C. 50° D. 25°
如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.
(1)求抛物线所对应函数的表达式;
(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;
(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;
(4)在抛物线的对称轴上是否存在一点H,使得HA﹣HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.
化简,可得( )
A. B. C. D.
若关于的二元一次方程组 的解都为正整数,则________