题目内容

20.解方程组:$\left\{\begin{array}{l}{{x}^{2}-5xy+6{y}^{2}=0①}\\{{x}^{2}+{y}^{2}=20②}\end{array}\right.$.

分析 首先对原方程组进行化简,用含y的表达式表示出x,然后分别重新组合,成为两个方程组,最后解这两个方程组即可.

解答 解:原方程组可化为如下两个方程组
(1)$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=20}\\{x=2y}\end{array}\right.$(2)$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=20}\\{x=3y}\end{array}\right.$
解方程组(1)得$\left\{\begin{array}{l}{{x}_{1}=4}\\{{y}_{1}=2}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-4}\\{{y}_{2}=-2}\end{array}\right.$
解方程组(2)得$\left\{\begin{array}{l}{{x}_{3}=3\sqrt{2}}\\{{y}_{3}=\sqrt{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=-3\sqrt{2}}\\{{y}_{4}=-\sqrt{2}}\end{array}\right.$
∴原方程组的解为$\left\{\begin{array}{l}{{x}_{1}=4}\\{{y}_{1}=2}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-4}\\{{y}_{2}=-2}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{3}=3\sqrt{2}}\\{{y}_{3}=\sqrt{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=-3\sqrt{2}}\\{{y}_{4}=-\sqrt{2}}\end{array}\right.$

点评 本题主要考查解高次方程,关键在于对原方程组的两个方程进行化简,重新组合.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网