题目内容
5.(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
分析 (1)根据待定系数法,可得直线解析式,根据自变量与函数值的对应关系,可得A点坐标,再根据待定系数法,可得答案;
(2)根据等腰直角三角形的判定,可得△OCB是等腰直角三角形,根据正弦函数,可得OM的长,根据勾股定理,可得OA的长,再根据锐角三角函数的定义,可得答案.
解答 解:(1)将C点代入y=x+b中得到b=-4,
∴y=x-4;
再将A点带入y=x-4得到n=-5,
∴A(-1,-5),
∴m=-1×(-5)=5,
∴y=$\frac{5}{x}$
∴直线与双曲线的解析式分别为y=x-4,y=$\frac{5}{x}$;
(2)过点O作OM⊥AC于点M,![]()
当x=0时,y=-4,即B(0,-4).
∵OC=OB=4,
∴△OCB是等腰直角三角形,
∴∠OBC=∠OCB=45°
∴在△OMB中 sin45°=$\frac{OM}{OB}$,
∴OM=4×$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$.
∴在直角三角形AOM中,
AO=$\sqrt{(-1-0)^{2}+(-5-0)^{2}}$=$\sqrt{26}$,
sin∠OAB=$\frac{OM}{OA}$=$\frac{2\sqrt{13}}{13}$.
点评 本题考查了一次函数与反比例函数的交点,利用正弦函数得出OM的长是解题关键.
练习册系列答案
相关题目
14.
如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是( )
| A. | 两点确定一条直线 | |
| B. | 垂线段最短 | |
| C. | 在同一平面内,过一点有且只有一条直线与已知直线垂直 | |
| D. | 两点之间,线段最短 |
15.
把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是( )
| A. | 两地之间线段最短 | B. | 直线比曲线短 | ||
| C. | 两点之间直线最短 | D. | 两点确定一条直线 |