题目内容
3.若一次函数y=(m-1)x+m2-1的图象通过原点,则m的值为( )| A. | m=-1 | B. | m=1 | C. | m=±1 | D. | m≠1 |
分析 根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m的值即可.
解答 解:∵一次函数y=(m-1)x+m2-1的图象经过原点,
∴0=0+m2-1,m-1≠0,即m2=1,m≠1
解得,m=-1.
故选A.
点评 本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠0)中,当b=0时函数图象经过原点..
练习册系列答案
相关题目
18.已知$\left\{\begin{array}{l}{x+2y=4k}\\{2x+y=2k+1}\end{array}\right.$且0<y-x<1,则k的取值范围是( )
| A. | -1$<k<-\frac{1}{2}$ | B. | 0$<k<\frac{1}{2}$ | C. | 0<k<1 | D. | $\frac{1}{2}$<k<1 |
8.已知直角三角形的两边长分别为6和8,则这个直角三角形的周长是( )
| A. | 24或14+2$\sqrt{7}$ | B. | 24 | C. | 20或14-2$\sqrt{7}$ | D. | 22或14+2$\sqrt{7}$ |