题目内容

在一山顶有铁塔AB,从点P到铁塔底部B点有一条索道PB,索道长为300米,与水平线成角为α=30°,在P处测得A点的仰角为β=45°,试求铁塔的高AB.(精确到0.1米,其中≈1.41, ≈1.73)

铁塔的高AB约为109.5米. 【解析】试题分析:根据正弦、余弦的定义分别求出BC、PC的长,根据AB=AC-BC计算即可. 试题解析:过P作PC⊥AB,垂足为C, 由题意得,PB=300米,∠BPC=30°, ∴BC=PB•sin∠BPC=150米,PC=PB•cos∠BPC=150≈259.5米, ∵∠APC=45°, ∴AC=PC=259.5米, ∴...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网