题目内容

古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99=_____,a100=_____.

100 5050 【解析】根据题意可知: a2﹣a1=3﹣1=2; a3﹣a2=6﹣3=3; a4﹣a3=10﹣6=4; …; an﹣an﹣1=n. 所以a100﹣a99=100. ∵(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+…+(an﹣an﹣1) =2+3+4+…+n =﹣1=an﹣a1, ∴a100==5050. 故...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网