ÌâÄ¿ÄÚÈÝ

17£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-4£¬0£©£¬£¨4£¬0£©£¬C£¨m£¬0£©ÊÇÏß¶ÎA BÉÏÒ»µã£¨Óë A£¬Bµã²»Öغϣ©£¬Å×ÎïÏßL1£ºy=ax2+b1x+c1£¨a£¼0£©¾­¹ýµãA£¬C£¬¶¥µãΪD£¬Å×ÎïÏßL2£ºy=ax2+b2x+c2£¨a£¼0£©¾­¹ýµãC£¬B£¬¶¥µãΪE£¬AD£¬BEµÄÑÓ³¤ÏßÏཻÓÚµãF£®
£¨1£©Èôa=-$\frac{1}{2}$£¬m=-1£¬ÇóÅ×ÎïÏßL1£¬L2µÄ½âÎöʽ£»
£¨2£©Èôa=-1£¬AF¡ÍBF£¬ÇómµÄÖµ£»
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýa£¨a£¼0£©£¬ÎÞÂÛmÈ¡ºÎÖµ£¬Ö±ÏßAFÓëBF¶¼²»¿ÉÄÜ»¥Ïà´¹Ö±£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öaµÄÁ½¸ö²»Í¬µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨£¬½«A£¬B£¬CµÄ×ø±ê´úÈë½âÎöʽ¼´¿ÉÇóµÃ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¹ýµãD×÷DG¡ÍxÖáÓÚµãG£¬¹ýµãE×÷EH¡ÍxÖáÓÚµãH£¬Ò×Ö¤¡÷ADG¡«¡÷EBH£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß±ÈÀýÏàµÈ¼´¿É½âÌ⣻
£¨3£©¿ª·ÅÐԴ𰸣¬´úÈë·¨¼´¿É½âÌ⣻

½â´ð ½â£º£¨1£©½«A¡¢Cµã´øÈëy=ax2+b1x+c1ÖУ¬¿ÉµÃ£º$\left\{\begin{array}{l}{-\frac{1}{2}{¡Á£¨-1£©}^{2}{-b}_{1}{+c}_{1}=0}\\{-\frac{1}{2}{¡Á£¨-4£©}^{2}-{4b}_{1}{+c}_{1}=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{b}_{1}=-\frac{5}{2}}\\{{c}_{1}=-2}\end{array}\right.$£¬
¡àÅ×ÎïÏßL1½âÎöʽΪy=$-\frac{1}{2}{x}^{2}-\frac{5}{2}x-2$£»
ͬÀí¿ÉµÃ£º$\left\{\begin{array}{l}{-\frac{1}{2}{¡Á£¨-1£©}^{2}{-b}_{2}{+c}_{2}=0}\\{-\frac{1}{2}{¡Á4}^{2}+{4b}_{2}{+c}_{2}=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{b}_{2}=\frac{3}{2}}\\{{c}_{2}=2}\end{array}\right.$£¬
¡àÅ×ÎïÏßL2½âÎöʽΪy=$-\frac{1}{2}{x}^{2}-\frac{5}{2}x-2$£»

£¨2£©Èçͼ£¬¹ýµãD×÷DG¡ÍxÖáÓÚµãG£¬¹ýµãE×÷EH¡ÍxÖáÓÚµãH£¬

ÓÉÌâÒâµÃ£º$\left\{\begin{array}{l}{0=-16-{4b}_{1}{+c}_{1}}\\{0{=-m}^{2}{+b}_{1}m{+c}_{1}}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{b}_{1}=m-4}\\{{c}_{1}=4m}\end{array}\right.$£¬
¡àÅ×ÎïÏßL1½âÎöʽΪy=-x2+£¨m-4£©x+4m£»
¡àµãD×ø±êΪ£¨$\frac{m-4}{2}$£¬$\frac{{m}^{2}+8m+16}{4}$£©£¬
¡àDG=$\frac{{m}^{2}+8m+16}{4}$=$\frac{{£¨m+4£©}^{2}}{4}$£¬AG=$\frac{m+4}{2}$£»
ͬÀí¿ÉµÃ£ºÅ×ÎïÏßL2½âÎöʽΪy=-x2+£¨m+4£©x-4m£»
¡àEH=$\frac{{m}^{2}-8m+16}{4}$=$\frac{{£¨m-4£©}^{2}}{4}$£¬BH=$\frac{4-m}{2}$£¬
¡ßAF¡ÍBF£¬DG¡ÍxÖᣬEH¡ÍxÖᣬ
¡à¡ÏAFB=¡ÏAGD=¡ÏEHB=90¡ã£¬
¡ß¡ÏDAG+¡ÏADG=90¡ã£¬¡ÏDAG+¡ÏEBH=90¡ã£¬
¡à¡ÏADG=¡ÏEBH£¬
¡ßÔÚ¡÷ADGºÍ¡÷EBHÖУ¬
$\left\{\begin{array}{l}{¡ÏADG=¡ÏEBH}\\{¡ÏAGD=¡ÏEHB=90¡ã}\end{array}\right.$£¬
¡à¡÷ADG¡«¡÷EBH£¬
¡à$\frac{DG}{BH}$=$\frac{AG}{EH}$£¬
¡à$\frac{\frac{{£¨m+4£©}^{2}}{4}}{\frac{4-m}{2}}$=$\frac{\frac{m+4}{2}}{\frac{{£¨m-4£©}^{2}}{4}}$£¬»¯¼òµÃ£ºm2=12£¬
½âµÃ£ºm=¡À$2\sqrt{3}$£»

£¨3£©´æÔÚ£¬ÀýÈ磺a=-$\frac{1}{3}$£¬-$\frac{1}{4}$£»
µ±a=-$\frac{1}{3}$ʱ£¬´úÈëA£¬C¿ÉÒÔÇóµÃ£º
Å×ÎïÏßL1½âÎöʽΪy=-$\frac{1}{3}$x2+$\frac{1}{3}$£¨m-4£©x+$\frac{4}{3}$m£»
ͬÀí¿ÉµÃ£ºÅ×ÎïÏßL2½âÎöʽΪy=-$\frac{1}{3}$x2+$\frac{1}{3}$£¨m+4£©x-$\frac{4}{3}$m£»
¡àµãD×ø±êΪ£¨$\frac{m-4}{2}$£¬$\frac{{£¨m+4£©}^{2}}{12}$£©£¬µãE×ø±êΪ£¨$\frac{m+4}{2}$£¬$\frac{{£¨m-4£©}^{2}}{12}$£©£»
¡àÖ±ÏßAFбÂÊΪ$\frac{\frac{{£¨m+4£©}^{2}}{12}}{\frac{4+m}{2}}$£¬Ö±ÏßBFбÂÊΪ$\frac{\frac{{£¨m-4£©}^{2}}{12}}{\frac{m-4}{2}}$£»
ÈôÒªAF¡ÍBF£¬ÔòÖ±ÏßAF£¬BFбÂʳ˻ýΪ-1£¬
¼´$\frac{\frac{{£¨m+4£©}^{2}}{12}}{\frac{4+m}{2}}$¡Á$\frac{\frac{{£¨m-4£©}^{2}}{12}}{\frac{m-4}{2}}$=-1£¬»¯¼òµÃ£ºm2=-20£¬Î޽⣻
ͬÀí¿ÉÇóµÃa=-$\frac{1}{4}$ÒàÎ޽⣮

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çó½âÎöʽ£¬»¹¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ºÍÏàËÆÈý½ÇÐζÔÓ¦±ß±ÈÀýÏàµÈµÄÐÔÖÊ£»±¾Ìâ×÷³ö¸¨ÖúÏß²¢Ö¤Ã÷¡÷ADG¡«¡÷EBHÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø