题目内容

14.如图,?ABCD的对角线AC、BD相交于点0,EF过点O与AD、BC分别相交于点E、F,若AB=5,AD=8,OE=3,那么四边形EFCD的周长为19.

分析 先证明△AOE≌△COF,得出AE=CF,OE=OF=3,EF=6,即可得出四边形EFCD的周长=EF+CF+CD+DE=EF+AD+CD=19.

解答 解:∵四边形ABCD是平行四边形,
∴CD=AB=5,AD∥BC,OA=OC,
∴∠EAO=∠FCO,
在△AOE和△COF中,$\left\{\begin{array}{l}{∠EAO=∠FCO}&{\;}\\{OA=OC}&{\;}\\{∠AOE=∠COF}&{\;}\end{array}\right.$,
∴△AOE≌△COF(ASA),
∴AE=CF,OE=OF=3,
∴EF=6,
∴四边形EFCD的周长=EF+CF+CD+DE=EF+AE+DE+CD=6+AD+5=6+8+5=19;
故答案为:19.

点评 本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出对应边相等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网