题目内容

3.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4$\sqrt{5}$,CD=8.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.

分析 (1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;
(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.

解答 解:(1)连接BD,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,DB=4,
∵42+82=(4$\sqrt{5}$)2
∴DB2+CD2=BC2
∴∠BDC=90°,
∴∠ADC=60°+90°=150°;

(2)过B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=AB•sin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴四边形ABCD的面积为:$\frac{1}{2}$AD•EB+$\frac{1}{2}$DB•CD=$\frac{1}{2}$×4×$2\sqrt{3}$+$\frac{1}{2}$×4×8=4$\sqrt{3}$+16.

点评 此题主要考查了勾股定理逆定理,以及等边三角形的判定和性质,关键是掌握有一个角是60°的等腰三角形是等边三角形,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网