题目内容
设a,b,c,满足
=
,
=
,
=
,求
的值.
| ab |
| a+b |
| 1 |
| 3 |
| bc |
| b+c |
| 1 |
| 4 |
| ac |
| a+c |
| 1 |
| 5 |
| abc |
| ab+bc+ca |
考点:对称式和轮换对称式
专题:
分析:利用分式的基本性质得出
=
+
=3①,
=
+
=4②
=
+
=5③,进而求出答案.
| a+b |
| ab |
| 1 |
| a |
| 1 |
| b |
| b+c |
| bc |
| 1 |
| b |
| 1 |
| c |
| a+c |
| ac |
| 1 |
| a |
| 1 |
| c |
解答:解:∵
=
,
=
,
=
,
∴
=
+
=3①,
=
+
=4②
=
+
=5③,
①+②+③得:
2(
+
+
)=12,
故
+
+
=
=6,
则
=
.
| ab |
| a+b |
| 1 |
| 3 |
| bc |
| b+c |
| 1 |
| 4 |
| ac |
| a+c |
| 1 |
| 5 |
∴
| a+b |
| ab |
| 1 |
| a |
| 1 |
| b |
| b+c |
| bc |
| 1 |
| b |
| 1 |
| c |
| a+c |
| ac |
| 1 |
| a |
| 1 |
| c |
①+②+③得:
2(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
故
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| ab+bc+ca |
| abc |
则
| abc |
| ab+bc+ca |
| 1 |
| 6 |
点评:此题主要考查了对称式和轮换对称式,得出2(
+
+
)=12是解题关键.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
练习册系列答案
相关题目