题目内容

4.设a为实数(常数),已知直线l:y=ax-a-2,过点P(-1,0)作直线l的垂线,垂足为M,点O(0,0)为坐标原点,则线段OM长度的最小值为(  )
A.$\frac{1}{3}$B.$\sqrt{2}$-1C.$\frac{2\sqrt{5}}{5}$D.1

分析 由y=ax-a-2=(x-1)a-2可知直线l必过定点(1,-2),以定点和P点间的线段为圆心,以线段的长为直径,交y轴于M1、M2,则OM1是OM的最小值,据此即可得答案.

解答 解:∵y=ax-a-2=(x-1)a-2,
∴当a的系数x-1=0,即x=1时,对于任意实数a,直线y=ax-a-2,都经过应该定点Q(1,-2),
如图,以P(-1,0)和Q(1,-2)之间的线段为直径画弧,交y轴于M1、M2,则OM1最小,OM2最大,

∵P(-1,0),Q(1,-2),
∴PQ=$\sqrt{(-1-1)^{2}+(0-2)^{2}}$=2$\sqrt{2}$,
∴圆心为(0,-1),半径为$\sqrt{2}$,
∴OM1=$\sqrt{2}$-1,OM2=$\sqrt{2}$+1,
∴OM长度的最小值为$\sqrt{2}$-1,
故选:B.

点评 本题考查了一次函数图象上点的坐标特征,把握住a的系数为0得知直线必过的定点,以定点和P点间的线段为圆心,以线段的长为直径,交y轴于M1、M2,得出OM1是OM的最小值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网