题目内容

1.菱形ABCO在平面直角坐标系中的位置如图所示,线段BC所在直线的方程为y=-$\sqrt{3}$x+b,延长BC交y轴于点D,CD=6,则点B的坐标是(  )
A.$(-\frac{{3\sqrt{3}}}{2},\frac{5}{2})$B.$(-\frac{5}{2},\frac{{\sqrt{3}}}{2})$C.(-$\frac{9}{2}$,$\frac{3\sqrt{3}}{2}$)D.$(-\frac{{3\sqrt{3}}}{2},\frac{9}{2})$

分析 过B作BE⊥OC于E,根据线段BC所在直线的方程为y=-$\sqrt{3}$x+b,求得tan∠OCD=$\frac{OD}{OC}$=$\sqrt{3}$,得到∠OCD=60°根据菱形的性质得到BC=OC=3,求得BE=$\frac{\sqrt{3}}{2}$BC=$\frac{3\sqrt{3}}{2}$,CE=$\frac{3}{2}$,得到OE=$\frac{9}{2}$,于是得到结论.

解答 解:过B作BE⊥OC于E,
∵线段BC所在直线的方程为y=-$\sqrt{3}$x+b,
∴tan∠OCD=$\frac{OD}{OC}$=$\sqrt{3}$,
∴∠OCD=60°
∵CD=6,
∴OC=3,
∵四边形ABCO是菱形,
∴BC=OC=3,
∵∠BCE=∠OCD=60°,
∴BE=$\frac{\sqrt{3}}{2}$BC=$\frac{3\sqrt{3}}{2}$,CE=$\frac{3}{2}$,
∴OE=$\frac{9}{2}$,
∴B(-$\frac{9}{2}$,$\frac{3\sqrt{3}}{2}$).
故选C.

点评 本题考查了菱形的性质,解直角三角形,一次函数图象上点的坐标特征,熟记特殊角的三角函数是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网