题目内容
6.顺次连结四边形各边中点所得四边形是矩形,则原图形一定是( )| A. | 菱形 | B. | 对角线相等的四边形 | ||
| C. | 对角线垂直的四边形 | D. | 对角线垂直且互相平分的四边形 |
分析 这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
解答
解:∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
即AC⊥BD,
故原图形一定是:对角线垂直的四边形.
故选:C.
点评 此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.
练习册系列答案
相关题目
18.
葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是( )m.
| A. | 3 | B. | 2.6 | C. | 2.8 | D. | 2.5 |
15.有理数中,算术平方根最小的是( )
| A. | 1 | B. | 0 | C. | 0.1 | D. | 不存在 |
16.下列计算正确的是( )
| A. | 23=6 | B. | -5+0=0 | C. | (-8)÷(-4)=2 | D. | -5-2=-3 |