题目内容
方程
+
=
的正整数解(x,y)的组数是 .
| 1 |
| x |
| 1 |
| y |
| 3 |
| 7 |
考点:非一次不定方程(组)
专题:
分析:利用已知条件将方程
+
=
变形,整理为(7-3x)(7-3y)=49,分析两数相乘所有的可能,找出符合题意的解的个数.
| 1 |
| x |
| 1 |
| y |
| 3 |
| 7 |
解答:解:∵
+
=
,
去分母得:7(x+y)=3xy,
∴(7-3x)(7-3y)=49,
又∵x与y是正整数,两整数之积为49,
∴存在三种情况:
①
,
解得:
,不合题意舍去;
②
,
解得:
,不合题意舍去;
③
,
解得:
,不合题意舍去.
故符合题意的方程的解为0组.
故答案为:0.
| 1 |
| x |
| 1 |
| y |
| 3 |
| 7 |
去分母得:7(x+y)=3xy,
∴(7-3x)(7-3y)=49,
又∵x与y是正整数,两整数之积为49,
∴存在三种情况:
①
|
解得:
|
②
|
解得:
|
③
|
解得:
|
故符合题意的方程的解为0组.
故答案为:0.
点评:本题考查了非一次不定方程,解答本题的关键是将方程整理为整式方程后再进行分析解决,在解这类方程组,要认真分析题中各个方程的结构特征,选择恰当的方法进行求解,难度较大.
练习册系列答案
相关题目