题目内容

1.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60°,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.

分析 (1)由等腰三角形的性质和已知条件得出∠BAD=∠DAC=$\frac{1}{2}$×120°=60°,再证出∠ADE=∠ADF=90°-60°=30°,由含30角的直角三角形的性质得出AE=$\frac{1}{2}$AD,AF=$\frac{1}{2}$AD,即可得出结论;
(2)连接BD,证明△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠ABD=∠DAC,得出∠EDB=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF,即可得出结论.

解答 (1)证明:∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=$\frac{1}{2}$∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=$\frac{1}{2}$×120°=60°,
∵DE⊥AB,DF⊥AC,
∴∠ADE=∠ADF=90°-60°=30°,
∴AE=$\frac{1}{2}$AD,AF=$\frac{1}{2}$AD,
∴AE+AF=$\frac{1}{2}$AD+$\frac{1}{2}$AD=AD;
(2)解:线段AE,AF,AD之间的数量关系为:AE+AF=AD,理由如下:
连接BD,如图所示:
∵∠BAD=60°,AB=AD,
∴△ABD是等边三角形,
∴BD=AD,∠ABD=∠ADB=60°,
∵∠DAC=60°,
∴∠ABD=∠DAC,
∵∠EDB+∠EDA=∠EDA+∠ADF=60°,
∴∠EDB=∠ADF,
在△BDE与△ADF中,$\left\{\begin{array}{l}{∠ABD=∠DAC}\\{AD=BD}\\{∠EDB=∠ADF}\end{array}\right.$,
∴△BDE≌△ADF(ASA),
∴BE=AF,
∵AE+BE=AD,
∴AE+AF=AD.

点评 本题考查了等腰三角形的性质、全等三角形的判定与性质、等边三角形的判定与性质、含30角的直角三角形的性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网