题目内容
如图,四边形ABCD内接于⊙O,若∠B=130°,OA=1,则的长为_____.
如果单项式与可以合并为一项,那么x与y的值应分别为______________ .
如图,在平面直角坐标系中,菱形ABCD在第一象限内,AB=,对角线BD与轴平行,B,C两点的横坐标分别为、5,反比例函数的图象经过B,C两点,则的值为___________.
如图,已知二次函数y=﹣x2+bx+c(其中b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标.
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.
(3)沿直线AC方向平移该二次函数图象,使得CM与平移前的CB相等,求平移后点M的坐标.
(4)点P是直线AC上的动点,过点P作直线AC的垂线PQ,记点M关于直线PQ的对称点为M′.当以点P、A、M、M′为顶点的四边形为平行四边形时,直接写出点P的坐标.
列方程解应用题
根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600米后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的一半长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD,若AC=5,AB=11,则△ACD的周长为( )
A. 11 B. 16 C. 21 D. 27
【问题情境】
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
【变式探究】
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】
在直角坐标系中.直线l1:y=与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
等腰三角形一个角等于100?,则它的底角是___________°.
在一次函数y=﹣3x+1中,当﹣1<x<2时,对应y的取值范围是_____.