题目内容

如图,已知二次函数y=﹣x2+bx+c(其中b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标.

(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.

(3)沿直线AC方向平移该二次函数图象,使得CM与平移前的CB相等,求平移后点M的坐标.

(4)点P是直线AC上的动点,过点P作直线AC的垂线PQ,记点M关于直线PQ的对称点为M′.当以点P、A、M、M′为顶点的四边形为平行四边形时,直接写出点P的坐标.

(1)y=﹣x2+2x+4,(1,5); (2)2<m<4;(3)(3,3)或(﹣1,7);(4)(1,3)或(﹣3,7). 【解析】试题分析:(1)利用待定系数法,求二次函数解析式.(2)先求出AC直线解析式,平移后顶点AC下方,AB上方,在求出坐标的范围.(3) 当y=1时,﹣x2+2x+4=1,解得x=﹣1或3,利用MM′∥AC,可得平移后的M的坐标.(4) 连接MC,MM′交P...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网