题目内容

6.如图,AB是⊙O的直径,CB切⊙O于B.过点A作OC的平行线,交⊙O于D,那么CD是⊙O的切线吗?证明你的结论.

分析 连接OD,由DA与CO平行,利用两直线平行内错角相等、同位角相等得到两对角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠COB=∠COD,再由OD=OB,OC为公共边,利用SAS得出三角形BCO与三角形DCO全等,由全等三角形对应角相等得到一对角相等,由BC为圆的切线,利用切线的性质得到∠CBO=90°,进而得到∠CDO=90°,再由OD为圆的半径,即可得到CD为圆O的切线.

解答 证明:连接OD,
∵AD∥OC,
∴∠COB=∠DAO,∠COD=∠ADO,
∵OD=OA,
∴∠DEO=∠EDO,
∴∠COB=∠COD,
在△BCO和△DCO中,
$\left\{\begin{array}{l}{OB=OD}\\{∠COB=∠COD}\\{OC=OC}\end{array}\right.$,
∴△BCO≌△DCO(SAS),
∴∠CDO=∠CBO,
∵BC为圆O的切线,
∴BC⊥OB,即∠CBO=90°,
∴∠CDO=90°,
又∵OD为圆的半径,
∴CD为圆O的切线.

点评 此题考查了切线的判定与性质,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网