题目内容

如图1,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,交AB于点D,交AC与点D,交AC于点E.
(1)试找出图中的等腰三角形,并说明理由;
(2)若BD=4、CE=3,求DE的长;
(3)若 AB=12、AC=9,求△ADE的周长;
(4)若将原题中平行线DE的方向改变,如图2,OD∥AB,OE∥AC,BC=16,你能得出什么结论呢?
考点:等腰三角形的判定与性质,平行线的性质
专题:
分析:(1)运用两三角形两底角相等得出等腰三角形;
(2)由等腰三角形两腰相等求解;
(3)由△ADE的周长=AD+DO+OE+AE=AB+AC求解;
(4)由OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,得出△BDO和△ECO是等腰三角形,利用等腰三角形两腰相等得出△ODE的周长等于BC的长度.
解答:解:(1)△DBO和△EOC是等腰三角形.
∵BO平分∠ABC,
∴∠DBO=∠CBO,
∵DE∥BC,
∴∠CBO=∠DOB,
∴∠DBO=∠DOB,
∴DB=DO,
∴△DBO是等腰三角形,
同理△EOC是等腰三角形,
(2)∵BD=4、CE=3,
∴由(1)得出DO=4,EO=3,
∴DE=DO+OE=4+3=7,
(3)△ADE的周长=AD+DO+OE+AE;
∵DO=DB,OE=EC,
∴△ADE的周长=AB+AC,
∵AB=12、AC=9,
∴△ADE的周长=AB+AC=12+9=21,
(4)∵OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,
∴△BDO和△ECO是等腰三角形,
∴BD=DO,CE=OE,
∵BC=16,
∴△ODE的周长为16.
即△ODE的周长等于BC的长度.
点评:本题主要考查了等腰三角形的判定与性质及平行线的性质,解题的关键是熟练掌握等腰三角形的两角相等或两边相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网