ÌâÄ¿ÄÚÈÝ
20£®¼ÆË㣺£¨1£©$\sqrt{8}$$+\sqrt{\frac{1}{3}}$$-2\sqrt{\frac{1}{2}}$£»
£¨2£©2$\sqrt{12}$¡Á$\frac{\sqrt{3}}{4}¡Â\sqrt{2}$£»
£¨3£©£¨2$\sqrt{3}+\sqrt{6}$£©£¨2$\sqrt{3}$-$\sqrt{6}$£©£»
£¨4£©£¨2$\sqrt{48}$-3$\sqrt{27}$£©$¡Â\sqrt{6}$
£¨5£©a$\sqrt{\frac{a}{b}}$¡Á$\sqrt{ab}$¡Á$\sqrt{\frac{1}{ab}}$£¨b£¾0£©£»
£¨6£©£¨$\sqrt{2}-\sqrt{3}$£©2£¨$\sqrt{2}+\sqrt{3}$£©2£®
·ÖÎö £¨1£©ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºóºÏ²¢¼´¿É£»
£¨2£©¸ù¾Ý¶þ´Î¸ùʽµÄ³Ë³ý·¨Ôò½øÐмÆË㣻
£¨3£©ÀûÓÃÆ½·½²î¹«Ê½¼ÆË㣻
£¨4£©ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºó°ÑÀ¨ºÅÄںϲ¢ºó½øÐжþ´Î¸ùʽµÄ³ý·¨ÔËË㣻
£¨5£©¸ù¾Ý¶þ´Î¸ùʽµÄ³Ë·¨·¨Ôò½øÐмÆË㣻
£¨6£©ÏÈÀûÓûýµÄ³Ë·½µÃµ½Ôʽ=[£¨$\sqrt{2}$-$\sqrt{3}$£©£¨$\sqrt{2}$+$\sqrt{3}$£©]2£¬È»ºóÀûÓÃÆ½·½²î¹«Ê½¼ÆË㣮
½â´ð ½â£º£¨1£©Ôʽ=2$\sqrt{2}$+$\frac{\sqrt{3}}{3}$-$\sqrt{2}$
=$\sqrt{2}$+$\frac{\sqrt{3}}{3}$£»
£¨2£©Ôʽ=2¡Á$\frac{1}{4}$¡Á$\sqrt{12¡Á3¡Á\frac{1}{2}}$
=$\frac{3\sqrt{2}}{2}$£»
£¨3£©Ôʽ=£¨2$\sqrt{3}$£©2-£¨$\sqrt{6}$£©2
=12-6
=6£»
£¨4£©Ôʽ=£¨8$\sqrt{3}$-9$\sqrt{3}$£©¡Â$\sqrt{6}$
=-$\sqrt{3}$¡Â$\sqrt{6}$
=-1¡Â$\sqrt{2}$
=-$\frac{\sqrt{2}}{2}$£»
£¨5£©Ôʽ=a$\sqrt{\frac{a}{b}•ab•\frac{1}{ab}}$
=$\frac{a\sqrt{ab}}{b}$£»
£¨6£©Ôʽ=[£¨$\sqrt{2}$-$\sqrt{3}$£©£¨$\sqrt{2}$+$\sqrt{3}$£©]2
=£¨2-3£©2
=1£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËË㣺ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºó½øÐжþ´Î¸ùʽµÄ³Ë³ýÔËË㣬Ôٺϲ¢Í¬Àà¶þ´Î¸ùʽ£®ÔÚ¶þ´Î¸ùʽµÄ»ìºÏÔËËãÖУ¬ÈçÄܽáºÏÌâÄ¿ÌØµã£¬Áé»îÔËÓöþ´Î¸ùʽµÄÐÔÖÊ£¬Ñ¡ÔñÇ¡µ±µÄ½âÌâ;¾¶£¬ÍùÍùÄÜʰ빦±¶£®