题目内容
8.化简下列各式:(1)$\frac{5-\sqrt{5}}{6-2\sqrt{5}}$;
(2)$\frac{\sqrt{6}+4\sqrt{3}+3\sqrt{2}}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$;
(3)$\frac{\sqrt{5}+\sqrt{7}}{\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}}$.
分析 (1)先分母有理化,然后把分子合并即可;
(2)把分子分为$\sqrt{6}$+$\sqrt{3}$+3($\sqrt{3}$+$\sqrt{2}$),再把式子分成两个式子,然后约分后分母有理化,再合并即可;
(3)利用因式分解的知识把分母分解,然后约分后分母有理化即可.
解答 解:(1)原式=$\frac{(5-\sqrt{5})(6+2\sqrt{5})}{(6-2\sqrt{5})(6+2\sqrt{5})}$
=$\frac{5-4\sqrt{5}}{4}$;
(2)原式=$\frac{\sqrt{6}+\sqrt{3}+3(\sqrt{3}+\sqrt{2})}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$
=$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{3}{\sqrt{6}+\sqrt{3}}$
=$\sqrt{3}$-$\sqrt{2}$+$\sqrt{6}$-$\sqrt{3}$
=$\sqrt{6}$-$\sqrt{2}$;
(3)原式=$\frac{\sqrt{5}+\sqrt{7}}{\sqrt{2}(\sqrt{5}+\sqrt{7})+\sqrt{3}(\sqrt{5}+\sqrt{7})}$
=$\frac{\sqrt{5}+\sqrt{7}}{(\sqrt{5}+\sqrt{7})(\sqrt{2}+\sqrt{3})}$
=$\frac{1}{\sqrt{3}+\sqrt{2}}$
=$\sqrt{3}$-$\sqrt{2}$.
点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.