题目内容

4.如图,Rt△ABC中,∠C=90°,O是AB边上一点,⊙O与AC、BC都相切.若BC=6,AC=8,则⊙O的半径为(  )
A.$\frac{24}{7}$B.4C.5D.2

分析 作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到$\frac{r}{6}$=$\frac{8-r}{8}$,再根据比例的性质求出r即可.

解答 解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,
∵⊙O与AC、BC都相切,
∴OD=OE=r,
而∠C=90°,
∴四边形ODCE为正方形,
∴CD=OD=r,
∵OD∥BC,
∴△ADO∽△ACB,
∴$\frac{OD}{BC}$=$\frac{AD}{AC}$,即$\frac{r}{6}$=$\frac{8-r}{8}$,解得r=$\frac{24}{7}$,
即⊙O的半径为$\frac{24}{7}$.
故选A.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网