题目内容
4.按照如下步骤计算:6-2÷($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$).(1)计算:($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$)÷6-2;
(2)根据两个算式的关系,直接写出6-2÷($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$)的结果.
分析 (1)原式利用负整数指数幂及除法法则变形,再利用乘法分配律计算即可得到结果;
(2)根据(1)的结果,利用倒数的性质求出所求式子的值即可.
解答 解:(1)原式=($\frac{1}{4}$+$\frac{1}{12}$-$\frac{7}{18}$-$\frac{1}{36}$)×36=9+3-14-1=-3;
(2)根据(1)得:原式=-$\frac{1}{3}$.
点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
16.
如图中的两个三角形全等,则∠1=( )
| A. | 45° | B. | 58° | C. | 76° | D. | 77° |
14.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.例如:101=10,d(10)=1
(1)根据劳格数的定义,填空:d(102)=2,
(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d($\frac{m}{n}$ )=d(m)-d(n).
根据运算性质,填空:$\frac{d({a}^{3})}{d(a)}$=3(a为正数),若d(2)=0.3010,则d(16)=1.204,d(5)=0.6990,
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的
请找出错误的劳格数,并表格中直接改正.
(1)根据劳格数的定义,填空:d(102)=2,
(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d($\frac{m}{n}$ )=d(m)-d(n).
根据运算性质,填空:$\frac{d({a}^{3})}{d(a)}$=3(a为正数),若d(2)=0.3010,则d(16)=1.204,d(5)=0.6990,
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的
| x | 1.5 | 3 | 5 | 6 | 8 | 9 | 18 | 27 |
| d(x) | 3a-b+c | 2a+b | a-c | 1+a+b+c | 3-3a+3c | 4a+2b | 3-b-2c | 6a+3b |