题目内容

14.观察下列勾股数:
第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;
第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;
第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;
第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1;

观察以上各组勾股数的组成特点,你能求出第七组的a,b,c各应是多少吗?第n组呢?

分析 通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数及第n组勾股数.

解答 解:∵第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,
第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,
第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,
第四组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,
∴第七组勾股数是a=2×7+1=15,b=2×7×(7+1)=112,c=2×7×(7+1)+1=113,即15,112,113;
第n组勾股数是2n+1,2n(n+1),2n(n+1)+1.

点评 此题考查的是勾股数,属于规律性题目,关键是通过观察找出规律求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网