ÌâÄ¿ÄÚÈÝ
12£®ÏÈÔĶÁ£¬ºó½â´ð£º$\frac{{\sqrt{3}}}{{\sqrt{3}-\sqrt{2}}}=\frac{{\sqrt{3}£¨\sqrt{3}+\sqrt{2}£©}}{{£¨\sqrt{3}-\sqrt{2}£©£¨\sqrt{3}+\sqrt{2}£©}}=\frac{{3+\sqrt{6}}}{{{{£¨\sqrt{3}£©}^2}-{{£¨\sqrt{2}£©}^2}}}=3+\sqrt{6}$£¬ÏñÉÏÊö½âÌâ¹ý³ÌÖУ¬$\sqrt{3}$-$\sqrt{2}$Óë$\sqrt{3}$+$\sqrt{2}$Ïà³Ë»ý²»º¬Óжþ´Î¸ùʽ£¬ÎÒÃǿɽ«ÕâÁ½¸öʽ×Ó³ÆÎª»¥ÎªÓÐÀí»¯Òòʽ£¬ÉÏÊö½âÌâ¹ý³ÌÒ²³ÆÎª·ÖĸÓÐÀí»¯£®
£¨1£©$\sqrt{5}$+2µÄÓÐÀí»¯ÒòʽÊÇ$\sqrt{5}$-2£®
£¨2£©½«$\frac{3}{{3+\sqrt{6}}}$½øÐзÖĸÓÐÀí»¯£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒâÕÒ³öÔʽµÄÓÐÀí»¯Òòʽ¼´¿É£»
£¨2£©½«Ôʽ·ÖĸÓÐÀíÊý¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨1£©$\sqrt{5}$+2µÄÓÐÀí»¯ÒòʽÊÇ$\sqrt{5}$-2£»
£¨2£©Ôʽ=$\frac{3£¨3-\sqrt{6}£©}{£¨3+\sqrt{6}£©£¨3-\sqrt{6}£©}$=$\frac{9-3\sqrt{6}}{9-6}$=3-$\sqrt{6}$£®
¹Ê´ð°¸Îª£º£¨1£©$\sqrt{5}$-2
µãÆÀ ´ËÌ⿼²éÁË·ÖĸÓÐÀí»¯£¬ÕÒ³öÔʽµÄÓÐÀí»¯ÒòʽÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®Ä³µØÇø¸ßЧ½ÚÄܵƵÄÄêÏúÊÛÁ¿2010ÄêΪ10ÍòÖ»£¬Ô¤¼Æ2012Ä꽫´ïµ½14.4ÍòÖ»£®Ôò¸ÃµØÇø2010Äêµ½2012Äê¸ßЧ½ÚÄܵÆÏúÊÛÁ¿µÄÄêÆ½¾ùÔö³¤ÂÊΪ£¨¡¡¡¡£©
| A£® | 10% | B£® | 20% | C£® | 30% | D£® | 40% |
4£®Èçͼ£¬¾ØÐÎֽƬ°´Í¼£¨1£©ÖеÄÐéÏßµÚÒ»´ÎÕÛµþµÃͼ£¨2£©£¬ÕÛºÛÓë¾ØÐÎÒ»±ßµÄÐγɵġÏ1=65¡ã£¬ÔÙ°´Í¼£¨2£©ÖеÄÐéÏß½øÐеڶþÕÛµþµÃµ½Í¼£¨3£©£¬Ôò¡Ï2µÄ¶ÈÊýΪ£¨¡¡¡¡£©

| A£® | 20¡ã | B£® | 25¡ã | C£® | 30¡ã | D£® | 35¡ã |
1£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | a2•a3=a6 | B£® | £¨ab£©3=ab3 | C£® | £¨a2£©3=a6 | D£® | a6¡Âa2=a3 |
2£®Èç¹û·Öʽ$\frac{{x}^{2}-9}{3x+9}$µÄֵΪÁ㣬ÔòxµÄֵΪ£¨¡¡¡¡£©
| A£® | 9 | B£® | 3 | C£® | -3 | D£® | ¡À3 |