题目内容

1.如图,在菱形ABCD中,对角线BD=6,∠BAD=60°,则对角线AC的长等于(  )
A.12B.$3\sqrt{3}$C.6D.$6\sqrt{3}$

分析 由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.

解答 解:设对角线AC与BD交于点O.
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,
∵∠BAD=60°,
∴△ABD为等边三角形,
∴BD=AB=6,OD=OB=3,
在Rt△AOB中,根据勾股定理得:OA=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
则AC=2OA=6$\sqrt{3}$,
故选D.

点评 此题考查了菱形的性质,勾股定理,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网