题目内容
6.分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=-1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.
解答 解:∵从图象可知:a>0,c<0,-$\frac{b}{2a}$=-1,b=2a>0,
∴abc<0,
∴①错误;
∵b=2a>0
∴2a+b=4a>0,
∴②正确;
图象和x轴有两个交点,
∴b2-4ac>0,
∴b2>4ac,
∴ac<$\frac{1}{4}$b2,
∴③正确;
∵x=1时,y=0,
∴a+b+c=0,
∴a+b+c=0,把b=2a代入得:3a+c=0,
∴④错误;
故答案为:②③.
点评 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
练习册系列答案
相关题目
16.二次函数y=2(x-3)2+5的图象的顶点坐标为( )
| A. | (3,5) | B. | (3,-5) | C. | (-3,5) | D. | (-3,-5) |
14.下列说法正确的是( )
| A. | -x2y-22x3y是六次多项式 | B. | $\frac{3x+y}{3}$是单项式 | ||
| C. | -$\frac{1}{2}$πab的系数是-$\frac{1}{2}$π,次数是2次 | D. | $\frac{1}{a}$+1是多项式 |
15.某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润不低于8000元?
| 销售单价x(元∕件) | … | 30 | 40 | 50 | 60 | … |
| 每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润不低于8000元?