题目内容
甲乙两地相距20千米,某人从甲地去乙地,先步行走了8千米,又骑自行车到达乙地,共用了3小时,如果这个人骑自行车的速度是步行速度的3倍,那么他步行的速度是( )
| A、4千米/时 |
| B、6千米/时 |
| C、3千米/时 |
| D、8千米/时 |
考点:分式方程的应用
专题:
分析:设此人步行速度为x千米/时,则骑自行车的速度为3x千米/时,进而利用所行的时间得出等式求出即可.
解答:解:设此人步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据题意可得:
+
=3,
解得:x=4
检验得x=4是原方程的根,
答:他步行的速度是4km/h.
故选:A.
| 8 |
| x |
| 20-8 |
| 3x |
解得:x=4
检验得x=4是原方程的根,
答:他步行的速度是4km/h.
故选:A.
点评:此题主要考查了分式方程的应用,根据题意得出正确的等量关系是解题关键.
练习册系列答案
相关题目