题目内容

16.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.

分析 设D(x,-x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=$\frac{1}{2}$×5×(-x2+6x-3)=-$\frac{5}{2}$(x-3)2+15,根据二次函数的性质即可求得最大值.

解答 解:∵D是抛物线y=-x2+6x上一点,
∴设D(x,-x2+6x),
∵顶点C的坐标为(4,3),
∴OC=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∵四边形OABC是菱形,
∴BC=OC=5,BC∥x轴,
∴S△BCD=$\frac{1}{2}$×5×(-x2+6x-3)=-$\frac{5}{2}$(x-3)2+15,
∵-$\frac{5}{2}$<0,
∴S△BCD有最大值,最大值为15,
故答案为15.

点评 本题考查了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网