题目内容
5.分析 如图,证明△ABE≌△BCD,得到BE=CD;结合AB=BC=2BE,即可解决问题.
解答 解:如图,∵AB⊥BC,AE⊥BD,
∴∠A+∠FEB=∠FBE+∠FEB,
∴∠A=∠FEB;![]()
∵AB⊥BC,CD⊥BC,
∴∠ABE=∠BCD;
在△ABE与△BCD中,
$\left\{\begin{array}{l}{∠A=∠DBC}\\{AB=BC}\\{∠ABE=∠BCD}\end{array}\right.$,
∴△ABE≌△BCD(ASA),
∴BE=CD;AB=BC=18cm;
而点E为BC的中点,
∴BE=EC=CD=9(cm).
点评 该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是深入观察图形,找出图形中隐含的等量关系或全等关系.
练习册系列答案
相关题目
16.若2am+5b3n与-4a2nb2-4m是同类项,则m2-n2的值等于( )
| A. | -2 | B. | 9 | C. | -3 | D. | 4 |
13.若x3•xn-2=x5,则n等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |