题目内容

3.如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°.求图中所示阴影部分的面积.

分析 (1)连结OC,如图,由∠1=∠2,∠2=∠3得∠1=∠3,则可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,于是根据切线的判定定理可得CD为⊙O的切线;
(2)利用三角形外角性质可得到∠EOC=60°,而OC⊥CD,则∠OCE=90°,在Rt△OCE中利用∠EOC的正切可计算出CE=3$\sqrt{3}$,然后三角形面积公式和扇形面积公式,利用S阴影部分=S△OOE-S扇形COB进行计算即可.

解答 解:(1)CD与⊙O相切.理由如下:
连结OC,如图,
∵OA=OC,
∴∠1=∠2,
∵∠2=∠3,
∴∠1=∠3,
∴OC∥AD,
而CD⊥AD,
∴OC⊥CD,
∴CD为⊙O的切线;
(2)∵∠EOC=∠1+∠2,∠2=30°,
∴∠EOC=60°,
∵OC⊥CD,
∴∠OCE=90°,
在Rt△OCE中,∵tan∠EOC=$\frac{CE}{OC}$,
∴CE=3tan60°=3$\sqrt{3}$,
S阴影部分=S△OOE-S扇形COB
=$\frac{1}{2}$×3×3$\sqrt{3}$-$\frac{60•π•{3}^{2}}{360}$
=$\frac{9\sqrt{3}-3π}{2}$.

点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网