题目内容
16.(1)若∠A=50°,求∠BOC的度数;
(2)若∠A=α,直接写出∠BOC的度数(用α表示)
分析 (1)由三角形的一个外角等于与它不相邻的两个内角的和可证2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根据三角形内角和定理可证2∠BOC=180°-∠A,即∠BOC=90°-$\frac{1}{2}$∠A,由此可得出结论;
(2)根据(1)的证明过程可得出结论.
解答 解:(1)∵BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,
∴∠BOC=90°-$\frac{1}{2}$∠A=90°-$\frac{1}{2}$×50°=90°-25°=65°;
(2)∵BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,
∴∠BOC=90°-$\frac{1}{2}$∠A=90°-$\frac{1}{2}$α.
点评 本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.
练习册系列答案
相关题目
6.
如图,在半径为10的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=16,则OP的长为( )
| A. | 6 | B. | 6$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |