题目内容

16.如图,在?ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.

分析 (1)根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ADE=∠CBF,求出∠AED=∠CFB=90°,根据AAS推出△ADE≌△CBF即可;
(2)证出AE∥CF,即可得出结论.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,$\left\{\begin{array}{l}{∠ADE=∠CBF}&{\;}\\{∠AED=∠CFB}&{\;}\\{AD=CB}&{\;}\end{array}\right.$,
∴△ADE≌△CBF(AAS),
∴AE=CF.

(2)∵AE⊥BD,CF⊥BD,
∴AE∥CF,
由(1)得AE=CF,
∴四边形AECF是平行四边形.

点评 本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,解此题的关键是证明△ADE≌△CBF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网