题目内容
16.(1)AE=CF;
(2)四边形AECF是平行四边形.
分析 (1)根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ADE=∠CBF,求出∠AED=∠CFB=90°,根据AAS推出△ADE≌△CBF即可;
(2)证出AE∥CF,即可得出结论.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,$\left\{\begin{array}{l}{∠ADE=∠CBF}&{\;}\\{∠AED=∠CFB}&{\;}\\{AD=CB}&{\;}\end{array}\right.$,
∴△ADE≌△CBF(AAS),
∴AE=CF.
(2)∵AE⊥BD,CF⊥BD,
∴AE∥CF,
由(1)得AE=CF,
∴四边形AECF是平行四边形.
点评 本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,解此题的关键是证明△ADE≌△CBF.
练习册系列答案
相关题目
7.
如图,在平面直角坐标系xOy中,A(1,2),B(0,1),C(2,0)若将△ABC平移到△A1B1C1,使点A1与原点重合,则点C1的坐标和△A1B1C1的面积分别是( )
| A. | C1(0,1),2 | B. | C1(0,1),1.5 | C. | C1(1,-2),2 | D. | C1(1,-2),1.5 |
4.下列各式是分式的是( )
| A. | $\frac{x}{2}$ | B. | $\frac{x}{π}$ | C. | $\frac{2}{x}$ | D. | $\frac{x+y}{2}$ |
11.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是( )

| A. | ($\frac{1}{2}$)2016 | B. | ($\frac{1}{2}$)2017 | C. | ($\frac{{\sqrt{3}}}{3}$)2016 | D. | ($\frac{{\sqrt{3}}}{3}$)2017 |
6.分式方程$\frac{1}{x-2}$=$\frac{3}{x}$的解是( )
| A. | x=-2 | B. | x=-3 | C. | x=2 | D. | x=3 |