题目内容
二次函数y=ax2+bx+c(≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是( )
![]()
A.1 B.2 C.3 D.4
B. 【解析】 试题解析:∵图象与x轴有两个交点, ∴方程ax2+bx+c=0有两个不相等的实数根, ∴b2﹣4ac>0, ∴4ac﹣b2<0, ①正确; ∵﹣=﹣1, ∴b=2a, ∵a+b+c<0, ∴b+b+c<0,3b+2c<0, ∴②是正确; ∵当x=﹣2时,y>0, ∴4a﹣2b+c>0, ∴4a+c>...
练习册系列答案
相关题目